direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Scientific Publications

Hybrid Speaker-Based Segmentation System Using Model-Level Clustering
Citation key 0749Kim2005
Author Hyoung-Gook Kim and Daniel Ertelt and Thomas Sikora
Title of Book ICASSP 2005
Year 2005
Address Philadelphia, PA, USA
Month mar
Abstract In this paper, we present a hybrid speaker-based segmentation, which combines metric-based and modelbased techniques. Without a priori information about number of speakers and speaker identities, the speech stream is segmented by three stages: (1) The most likely speaker changes are detected. (2) To group segments of identical speakers, a two-level clustering algorithm using a Bayesian Information Criterion (BIC) and HMM model scores is performed. Every cluster is assumed to contain only one speaker. (3) The speaker models are reestimated from each cluster by HMM. Finally a resegmentation step performs a more refined segmentation using these speaker models. For measuring the performance we compare the segmentation results of the proposed hybrid method versus metric-based segmentation. Results show that the hybrid approach using two-level clustering significantly outperforms direct metric based segmentation.
Link to publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions