TU Berlin

Fachgebiet NachrichtenübertragungWiss. Veröffentlichungen

Inhalt des Dokuments

zur Navigation

Wissenschaftliche Veröffentlichungen

Color prediction in image coding using Steered Mixture-of-Experts
Zitatschlüssel 1511Verhack2017
Autor Ruben Verhack and Simon Van de Keer and Glenn Van Wallendael and Peter Lambert and Thomas Sikora
Buchtitel IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017
Jahr 2017
DOI 10.1109/ICASSP.2017.7952364
Adresse New Orleans, LA, USA
Notiz Electronic ISBN: 978-1-5090-4117-6 USB ISBN: 978-1-5090-4116-9 Print on Demand(PoD) ISBN: 978-1-5090-4118-3 Electronic ISSN: 2379-190X
Verlag IEEE
Zusammenfassung We propose a novel approach for modeling and coding color in images and video. Luminance is linearly correlated with chrominance locally, as such we can predict color given the luma value. Using the Steered Mixture-of-Experts (SMoE) approach, the image is viewed as a stochastic process over 5 random variables including the 2-D pixel locations, 1 luminance and 2 chrominance values. We model this process as a continuous joint density function by fitting a K-modal 5-D Gaussian Mixture Model (GMM). As such, the chroma values are predicted as the expectation of the conditional density. To validate, the technique was integrated within JPEG showing PSNR gains in the lower bitrate regions. A deeper analysis of the tolerance of the activation function is given through recycling color models in video sequences, yielding a high quality reconstruction over a considerable range of frames.
Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe