TU Berlin

Fachgebiet NachrichtenübertragungWiss. Veröffentlichungen

Inhalt des Dokuments

zur Navigation

Wissenschaftliche Veröffentlichungen

Hyper-Parameter Optimization for Convolutional Neural Network Committees Based on Evolutionary Algorithms
Zitatschlüssel 1507Bochinski2017
Autor Erik Bochinski and Tobias Senst and Thomas Sikora
Buchtitel 24th IEEE International Conference on Image Processing (ICIP)
Seiten 3924–2928
Jahr 2017
Adresse Beijing, China
Monat sep
Notiz ISBN: 978-1-5090-2174-1
Zusammenfassung In a broad range of computer vision tasks, convolutional neural networks (CNNs) are one of the most prominent techniques due to their outstanding performance. Yet it is not trivial to find the best performing network structure for a specific application because it is often unclear how the network structure relates to the network accuracy. We propose an evolutionary algorithm-based framework to automatically optimize the CNN structure by means of hyper-parameters. Further, we extend our framework towards a joint optimization of a committee of CNNs to leverage specialization and cooperation among the individual networks. Experimental results show a significant improvement over the state-of-the-art on the well-established MNIST dataset for hand-written digits recognition.
Link zur Publikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe