TU Berlin

Fachgebiet NachrichtenübertragungWiss. Veröffentlichungen

Inhalt des Dokuments

zur Navigation

Wissenschaftliche Veröffentlichungen

Sequential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tracking in Video Data
Zitatschlüssel 1515Kutschbach2017
Autor Tino Kutschbach and Erik Bochinski and Volker Eiselein and Thomas Sikora
Buchtitel International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017
Seiten 1–5
Jahr 2017
Adresse Lecce, Italy
Monat aug
Notiz ISBN:978-1-5386-2939-0/17
Zusammenfassung This work applies the Gaussian Mixture Probability Hypothesis Density (GMPHD) Filter to multi-object tracking in video data. In order to take advantage of additional visual information, Kernelized Correlation Filters(KCF) are evaluated as a possible extension of the GMPHD tracking-by-detection scheme to enhance its performance. The baseline GMPHD filter and its extension are evaluated on the UA-DETRAC benchmark, showing that combining both methods leads to a higher recall and a better quality of object tracks to the cost of increased computational complexity and increased sensitivity to false-positives.
Link zur Publikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe